

Variations of AIRS CO₂ in the Polar Region

Xun Jiang¹, Edward Olsen², Jingqian Wang¹, Thomas Pagano², Luke Chen², and Yuk Yung³

¹ Department of Earth & Atmospheric Sciences, University of Houston

² Science Division, Jet Propulsion Laboratory, Caltech

³ Division of Geological & Planetary Sciences, Caltech

AIRS Science Team Meeting, April 24-27, 2012

Overview

- Motivation
- Data
- ➤ Variability of AIRS CO₂ in the High Latitudes Northern Annular Mode, Stratospheric Sudden Warming

Motivation

- ➤ There are few studies of the CO₂ variability in the polar region due to limited observations.
- ➤ Variability of CO₂ in the polar region is important for it impacts climate change by modifying the radiation budget and hence the extent of snow and ice.
- ➢ Global distributed CO₂ retrievals from AIRS can be used to investigate the influence of the large scale dynamics on the polar CO₂.

AIRS Data Sensitivity in Atmospheric Column

➤ AIRS Mid-tropospheric CO₂
Sensitivity Peak: 500-300 hPa
(dependent upon latitude)

Chahine et al. [2005; 2008]

Influence of Northern Annular Mode on AIRS CO₂

Detrended AIRS CO₂ from Nov to Apr at 60N - 90N (Black)

Detrended & Inverted Arctic Oscillation Index from Nov to Apr (Red)

Correlation Coefficient = 0.74

Influence of Northern Annular Mode on AIRS CO₂ (Strong Vortex)

AIRS CO₂ averaged in 2005 and 2007 (Nov-Apr) Positive AO index; Strong Vortex

Influence of Northern Annular Mode on AIRS CO₂ (Weak Vortex)

Atmospheric Infrared S

AIRS CO₂ averaged in 2006 and 2008 (Nov-Apr) Negative AO index; Weak Vortex

Influence of Northern Annular Mode Jet Propulsion Laboratory California Institute of Tachnologon AIRS CO₂ (Strong/Weak Vortex Contrast)

AIRS CO₂ Difference **Strong Vortex - Weak Vortex**

Influence of Stratospheric Sudden Warming on AIRS CO₂ (SSW of March 2005)

A stratospheric warming occurs when the latitudinal gradient in 10-hPa zonal-mean temperatures between 85°N-60°N is positive for more than 5 days. [WMO]

If the 10-hPa zonal wind at 65°N is concurrently <u>easterly</u>, the warming event is categorized as a "major warming".

Otherwise, the warming event is categorized as 'minor'.

NCEP 30 hPa mean temperature during SSW in Mar 2005

Influence of Stratospheric Sudden Warming on AIRS CO₂ (EOF Method of Analysis)

Empirical Orthogonal Function (EOF):

The empirical orthogonal function expansion (EOF) is also known as the principal component analysis (PCA), or singular value decomposition method. The essence of EOF is briefly summarized as follows:

$$z(x,t) = \sum_{k=1}^{n} a_k(t) f_k(x)$$

z(x,t): real data

a_k: time series, Principle Component (PC) time series

f_k: modes of spatial pattern, EOFs, Eigenvectors of Covariance Matrix

$$(C = z^T \cdot z/(N-1))$$

Eigenvalue of C: the fraction of variance capture by EOF

EOF1 of GPH captures the Northern Annular Mode (NAM)

Vertical Structure of the Northern Annular Mode

(Strength of Polar Vortex is Characterized by the NAM index)

 Spatial patterns of NCEP-2 geopotential heights leading mode. Vertical structure of the Northern Annular Mode (NAM) index from NCEP-2 geopotential height (EOF1 of GPH)

MARCH 17 - COLLAPSE OF POLAR VORTEX (coupling of stratosphere and troposphere results)

then collapses in final warming

Temperature Before/After SSW

NCEP2 Temperature

Before SSW

(b) Temperaure (K) Day 72-82

(a) Temperaure (K) Day 64-71

During SSW

291.0 282.0 273.0 264.0 255.0 Z (km) 246.0 × 237.0 10 228.0 219.0 210.0 201.0 192.0 80 Lotitude

After SSW

AIRS Mid-tropospheric CO₂ Before and After March 2005 SSW

Before SSW of March 2005

Vortex isolates polar atmosphere from Mid-lat atmosphere tropopause lowered

After SSW of March 2005

Polar vortex area shrinks and breaks Mid-lat higher CO2 concentrations mix into the polar regions

Conclusions

- > AIRS CO₂ at high latitudes correlate well with the strength of the northern hemispheric polar vortex in the winter season.
- ➤ During the Stratospheric Sudden Warming (SSW) event, the polar temperature increases and polar winds switch from westerly to easterly. Polar mid-tropospheric CO₂ concentrations increase after the SSW in March 2005.

Thank you!